Planning in Models that Combine Memory with Predictive Representations of State
نویسندگان
چکیده
Models of dynamical systems based on predictive state representations (PSRs) use predictions of future observations as their representation of state. A main departure from traditional models such as partially observable Markov decision processes (POMDPs) is that the PSR-model state is composed entirely of observable quantities. PSRs have recently been extended to a class of models called memory-PSRs (mPSRs) that use both memory of past observations and predictions of future observations in their state representation. Thus, mPSRs preserve the PSR-property of the state being composed of observable quantities while potentially revealing structure in the dynamical system that is not exploited in PSRs. In this paper, we demonstrate that the structure captured by mPSRs can be exploited quite naturally for stochastic planning based on value-iteration algorithms. In particular, we adapt the incremental-pruning (IP) algorithm defined for planning in POMDPs to mPSRs. Our empirical results show that our modified IP on mPSRs outperforms, in most cases, IP on both PSRs and POMDPs.
منابع مشابه
Mental Representations of Lyrical Prose
The article analyzes mental representations of Russian lyrical prose texts. The texts demonstrate collective memory engrams that are defined by cultural and historical legacy of the nation and authors’ creative world perception. In architectonics of a lyrical prose text, sense perception reveals itself in accumulated underlying meanings and wisdom conveyed by expressive means. The author’s inte...
متن کاملTrip pattern of low-density residential area in semi urban industrial cluster: predictive modeling
This research elucidates the trip pattern of the low-density residential zone in a semi-urban industrial cluster of southwestern Nigeria. These sets of dwellers are often times neglected in the transportation planning process with the view that it is not a residential zone. Domiciliary information gathering procedure was employed in the analysis with 0.82 return rates. It was backed up with the...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملImproving Approximate Value Iteration Using Memories and Predictive State Representations
Planning in partially-observable dynamical systems is a challenging problem, and recent developments in point-based techniques such as Perseus significantly improve performance as compared to exact techniques. In this paper, we show how to apply these techniques to new models for nonMarkovian dynamical systems called Predictive State Representations (PSRs) and Memory-PSRs (mPSRs). PSRs and mPSR...
متن کاملComparative study of predictive ability of AIDS incidence in HIV positive people using Markov model according to two criteria, WHO and CDC in CD4 cell categorization
Background: The Multi state Markov models have extensively application with categorization of laboratory marker of CD4 cells for evaluation of HIV disease progression. These models with different states result in different effects of covariates and prediction of HIV disease trend. The main purpose of this study was comparison of four and five states models with the three- state in order to sele...
متن کامل